

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA ESCUELA PROFESIONAL DE FÍSICA

SÍLABO

I. <u>DATOS GENERALES:</u>

1.1 Asignatura :INSTRUMENTACIÓN ELECTRÓNICA II

1.2Código:FI-1002, 01F1.3Condición:Obligatorio

1.4Requisito:Instrumentación Electrónica I1.5Nº Horas de Clase:Teoría: 03 por semana

: Laboratorio: 04 por semana

1.6 N° de Créditos :05
1.7 Ciclo :X

1.8 Semestre Académico :2022-B1.9 Duración :17 semanas

1.10 Docente :Mg. Carlos Alberto Lévano Huamaccto

II. SUMILLA:

-Naturaleza: Asignatura teórica-práctica perteneciente al área de estudios de especialidad.

-Propósito: Proporcionar al estudiante los fundamentos necesarios para el análisis de circuitos eléctricos, especialmente aquellos que son necesarios para el diseño y ensamblaje de sistemas digitales. Preparar el estudiante en el estudio de los sistemas digitales, los cuales entrarán a formar parte de su formación científica requisito necesario para su participación en la solución de problemas del desarrollo tecnológico del país.

-Contenido: Fundamentos de adquisición de datos. Transductores de señal análoga. Acondicionamiento de señal análoga. Conversiones analógicas/digital. La computadora personal. Hardware de interfasamiento para el BUS de la PC. Software de interfasamiento para la PC. Interfaces de hardware estándar. Almacenamiento y técnicas de comprensión. Procesamiento de datos y análisis. Productos de adquisición de datos comerciales. Otros sistemas de cómputo personal y hardware. Lenguajes de programación computacional. Aplicaciones de adquisición de datos basados en PC.

III. COMPETENCIAS DE LA ASIGNATURA

COMPETENCIAS GENERALES

- Transmite sus conocimientos teóricos, experimentales e prácticos en forma cooperativa a sus compañeros.
- Demuestra habilidades interpersonales en la interacción con sus compañeros.
- Se comunica de manera eficaz utilizando la tecnología de información y comunicación.
- Realiza acciones de cuidado en sus labores, demostrando el trabajo en equipo.

COMPETENCIAS DE LA ASIGNATURA

- Demuestra habilidad para desarrollar experimentos de física con el ordenador.
- Manejo de la red global para búsqueda de información que permita profundizar sus conocimientos en el desarrollo de su carrera profesional.

COMPETENCIAS ESPECÍFICAS, CAPACIDADES Y ACTITUDES

COMPETENCIAS	ACTITUDES
 ✓ Describe el fundamento teórico de la tecnología de funcionamiento de las de los circuitos integrados en forma correcta. ✓ Reconoce la importancia de los circuitos integrados de reloj por las múltiples aplicaciones en circuitos controladores. 	 ✓ Manifiesta interés y responsabilidad en sus actividades. ✓ Coopera con aportes constructivos en los trabajos, individual y grupal. ✓ Demuestra responsabilidad y compromiso en el desarrollo de las prácticas de laboratorio.
integrados en forma correcta. ✓ Reconoce la importancia de los circuitos integrados de reloj por las múltiples aplicaciones en circuitos	constructivos en individual y grupa ✓ Demuestra res compromiso en

IV. PROGRAMACIÓN POR UNIDADES DE PROGRAMACIÓN:

NÚMERO DE LA UNIDAD: FUNDAMENTOS DE ADQUISICIÓN DE DATOS

DURACIÓN: Semanas: 1ra., 2da., 3ra., 4ta, 5ta, 6ta, 7ma y 8va

CAPACIDADES DE LA UNIDAD:

C1: Enseñanza-Aprendizaje: Identifica y explica los fundamentos tecnológicos relacionados a la electrónica de adquisición de datos con los sistemas digitales.

C2: Investigación formativa: Indaga y verifica la ciencia y la tecnología de la electrónica de los transductores físicos.

PROGRAMACIÓN DE CONTENIDOS

SEMANA	CONTENIDO CONCEPTUAL	CONTENIDO PROCEDIMENTAL	CONTENIDO ACTITUDINAL	INDICADOR
PRIMERO	Sesión1: Introducción	Participa en forma activa.	Colabora con sus compañeros en la primera actividad colaborativa.	Presenta la primera actividad en forma grupal. Sesión 2: introducción al laboratorio
SEGUNDO	Sesión3: Adquisición de datos digitales.	-Participa en forma activa en los laboratorios grupalesExpresa interés y responsabilidad en sus actividades.	-Participa en forma activa en los laboratorios grupalesExpresa interés y responsabilidad en sus actividades.	Describe las formas de adquisición de datos digitales. Sesión4: simuladores
TERCERO	Sesión5: Acondicionamient o de señales.	Acondiciona señales para sistemas digitales.	-Participa en forma activa en los laboratorios grupalesExpresa interés y responsabilidad en sus actividades.	Acondiciona señales analógicas para convertirlos en digital. Sesión6: instrumento: osciloscopio digital.
CUARTO	Sesión7: convertidor de señal analógico a señal digital.	Convierte señales analógicas en señales digitales a través del microcontrolador.	-Participa en forma activa en los laboratorios grupalesExpresa interés y responsabilidad en sus actividades.	Configura el convertidor de una señal analógica a digital. Sesión8: medición de una señal con el osciloscopio digital.
QUINTO	Sesión9: principios de funcionamientos de transductores	Reconoce y selecciona los tipos de objetivos de condicionamiento de señales.	-Participa en forma activa en los laboratorios grupalesExpresa interés y responsabilidad en sus actividades.	Conoce el funcionamiento de transductores. Sesión10: practica calificada1.

SEXTO	Sesión11: Asembler y sistema de datos.	Identifica los sistemas de presentación de datos.	-Participa en forma activa en los laboratorios grupalesExpresa interés y responsabilidad en sus actividades.	Sesión12: Introducción a la interfaz con ARDUINO UNO.
SEPTIMO	Sistema13: Aplicación con asembler.	El estudiante expone su trabajo.	-Participa en forma activa en los laboratorios grupalesExpresa interés y responsabilidad en sus actividades.	Sesión14: Sensor de temperatura

SEMANA	SEMANA DE EXÁMENES PARCIALES
OCTAVA	Sesión 15: Examen Parcial

NÚMERO DE LA UNIDAD: PROCESAMIENTO DE DATOS Y ANÁLISIS **DURACIÓN: Semanas:** 9va, 10ma, 11va, 12va, 13va, 14va, 15va, 16va y 17va

CAPACIDADES DE LA UNIDAD:

C1:Enseñanza-Aprendizaje: Identifica y explica el procesamiento de datos a través de lenguaje de programación para Hardware de

sistemas electrónicos.

C2: Investigación formativa: Indaga y verifica los fundamentos de los Microcontroladores de sistemas digitales en el problema de medición de magnitudes físicas.

PROGRAMACIÓN DE CONTENIDOS

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	CONTENIDO ACTITUDINAL	INDICADORES
NOVENO	Sesión16: el microcontrolador.	Identifica los elementos de un microcontrolador.	-Participa en forma activa en las exposiciones. -Es responsables en el trabajo asignado.	El estudiante describe los elementos de un microcontrolador. Sesión17:microcontrolador pic16F84A.
DECIMO	Sesión18: microcontrolador PIC16F84A	Comprender las componentes de los Microcontrolador.	-Expresa interés y responsabilidad en sus actividades.	-Explica correctamente las partes del Microprocontrolador PIC16F84A Sesión19: sensor de movimiento.
DECIMO PRIMERO	Sesión20: interfase	Conoce los fundamentos del interfaz.	-Participa en forma activa en los laboratorios grupales. -Expresa interés y responsabilidad en sus actividades.	-Muestra conocimiento de los fundamentos de la interface. Sesión21: temporización el con PIC16F84A.
DECIMO SEGUNDO	Sesión22: sensores y interfases.	Usa lenguaje de programación para controlar sensores.	-Participa en forma activa en los laboratorios grupales. -Expresa interés y responsabilidad en sus actividades.	Sesión23: Muestra que puede desarrollar un programa en el lenguaje C para LCD
DECIMO TERCERO	Sesión24: sistema de generador de frecuencia digital con asembler.		-Expresa interés y responsabilidad en sus actividades.	Sesión25: ingreso y salidas de señales pulsadas analógicas en un microcontrolador.
DECIMO CUARTO		El estudiante expone su trabajo	Presenta interés y responsabilidad en su actividad.	Sesión27: practica calificada 2
DECIMO QUINTA	Sesión28: Exposición final investigación formativa.	-Desarrollo de sensores de temperatura con el el Arduino.	-Participa en forma activa en los laboratorios grupales. -Expresa interés y responsabilidad en sus actividades.	Sesión29: examen final de laboratorio

SEMANA	SEMANAS DE EXÂMENES
DECIMO SEXTA	Sesión30:examen final
DECIMO SÉPTIMA	Entrega de actas

V. ESTRATEGIAS METODOLÓGICAS

Se emplearán las siguientes estrategias metodológicas en el desarrollo de la asignatura:

- a) **Tele conferencia mediante el google meet**, de esta forma el docente aplica el aprendizaje activo. Para ello se ha establecido 03 horas a la semana para la teoría y cuatro horas para la práctica de laboratorio.
- b) **Talleres virtuales**, que consistirán en discusiones con la participación activo de los estudiantes de problemáticas contenidas en monografías propuestas por el profesor, asimismo, estarán constituidas por discusiones en simuladores de sistemas digitales.

VI. MATERIALES EDUCATIVOS Y OTROS RECURSOS DIDÁCTICOS

Los materiales que se emplearan serán los siguientes:

- a) Materiales digitales: textos básicos, artículos.
- Materiales educativos para las clases teóricas ppt y tareas en el sistema de gestión de Aprendizaje(SGA);
 asimismo se hará uso de simuladores de electrónica.

VII. EVALUACIÓN

Se llevará a cabo a fin de evaluar los objetivos al final de cada unidad. Se usarán como instrumentos de evaluación:

6.1. Teoría y prácticas teóricas

• Evaluaciones por la plataforma SGA para la parte teórica, los cuales consistirán en el examen parcial, final y prácticas.

6.2. Laboratorio y investigación formativa

- El laboratorio se evalúa a través de la participación del estudiante en los talleres virtuales sincrónicas donde se usan simuladores.
- La investigación formativa se evalúa a través de las exposiciones de un trabajo de investigación presentada y expuesta en clase.

Nota promocional

- a) Asistencia al 70% de las sesiones programadas.
- b) Nota promocional: NP>=10.5 la cual se obtendrá de la siguiente formula:

NP = 0.2EP + 0.2EF + 0.3PP + 0.1L + 0.2IF

donde el Examen Parcial (EP), Examen Final (EF), Prácticas (PP), la investigación formativa (IF) y Laboratorio (L).

VIII. BIBLIOGRAFÍA

8.1 BIBLIOGRÁFICAS:

- ➤ Tocci, R., (1991), Digital systems principles an applications, (Editorial Addison- Wesley Publishing Company, Inc. USA)
- Deschamps, J. (1989), Diseño de sistema digitales: metodología moderna/ (Editorial Paraninfo, Madrid, España).

8.2 HEMEROGRÁFICAS:

- Tokheim, R., (1991), Principios digitales, (Editorial, McGraw-Hill, México).
- Kleitz, W., (1990), Digital and microprocessor fundamentals: theory and applications, 2da. Ed. (Editorial Prentice-Hall. Englewood Cliffs).

8.3 CIBERNÉTICAS:

https://www.ctr.unican.es/asignaturas/instrumentacion_5_it/iec_1.pdf

Bellavista, agosto del 2022